Skip to main content

Overview

reminix-anthropic provides a simple wrapper for the Anthropic API. This is a model-only adapter for basic chat completions without tool calling.
For agents with tool calling, use LangChain or LangGraph instead.

Installation

pip install reminix-anthropic
This will also install reminix-runtime as a dependency.

Quick Start

Wrap an Anthropic client and serve it:
from anthropic import AsyncAnthropic
from reminix_anthropic import serve_agent

client = AsyncAnthropic()

if __name__ == "__main__":
    serve_agent(client, name="claude-agent", model="claude-sonnet-4-20250514", port=8080)

Configuration

agent = wrap_agent(
    client,
    name="my-agent",
    model="claude-sonnet-4-20250514",  # Model to use
    max_tokens=4096                     # Maximum response tokens
)

Multiple Agents

For multi-agent projects, use wrap_agent + serve instead of serve_agent:
from reminix_anthropic import wrap_agent
from reminix_runtime import serve

sonnet = wrap_agent(client, name="sonnet-agent", model="claude-sonnet-4-20250514")
haiku = wrap_agent(client, name="haiku-agent", model="claude-3-5-haiku-20241022")

serve(agents=[sonnet, haiku], port=8080)
See Multiple Agents for detailed guidance on multi-agent projects.

Usage

With Prompt

Single request/response with a prompt:
from reminix import Reminix

client = Reminix()

response = client.agents.invoke(
    "claude-agent",
    prompt="Explain quantum computing in one sentence"
)

print(response.output)

With Messages

For conversations with message history:
response = client.agents.invoke(
    "claude-agent",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What is Python?"},
        {"role": "assistant", "content": "Python is a programming language."},
        {"role": "user", "content": "What are its main uses?"}
    ]
)

print(response.output)
System messages are automatically extracted and passed to Claude’s system parameter.

Streaming

For real-time streaming responses:
for chunk in client.agents.invoke(
    "claude-agent",
    prompt="Tell me a story",
    stream=True
):
    print(chunk, end="", flush=True)

When to Use This Adapter

Use reminix-anthropic when:
  • You need simple chat completions
  • No tool calling required
  • Direct model access is sufficient
Use LangChain/LangGraph instead when:
  • You need tool calling
  • You need agents with memory
  • You need complex workflows

Deployment

See the Deployment guide for deploying to Reminix, or Self-Hosting for deploying on your own infrastructure. Set your Anthropic API key in Project Settings → Secrets.

Next Steps