Each example includes complete source code, deployment instructions, and real-world use cases.
// Customer Support Bot Handler
export default async function handler(request: Request) {
const { message, userId } = await request.json()
// Analyze customer intent
const intent = await analyzeIntent(message)
// Route to appropriate response
switch (intent.type) {
case 'billing':
return handleBillingInquiry(message, userId)
case 'technical':
return handleTechnicalSupport(message, userId)
case 'general':
return handleGeneralInquiry(message, userId)
default:
return fallbackToHuman(message, userId)
}
}
# E-commerce Assistant Handler
import openai
from typing import Dict, List
async def handler(request: Dict) -> Dict:
query = request.get('query', '')
user_id = request.get('user_id')
# Analyze user intent
intent = await analyze_shopping_intent(query)
if intent['type'] == 'search':
products = await search_products(intent['keywords'])
return format_product_results(products)
elif intent['type'] == 'recommend':
recommendations = await get_recommendations(user_id)
return format_recommendations(recommendations)
elif intent['type'] == 'track':
order_status = await get_order_status(intent['order_id'])
return format_order_status(order_status)
// Content Generation Bot Handler
export default async function handler(request: Request) {
const { prompt, contentType, brandGuidelines } = await request.json()
// Generate content based on type
const content = await generateContent({
prompt,
type: contentType,
guidelines: brandGuidelines,
tone: 'professional',
length: 'medium'
})
// Optimize for SEO if blog post
if (contentType === 'blog') {
content.seoOptimized = await optimizeForSEO(content.text)
}
return {
content: content.text,
metadata: {
wordCount: content.wordCount,
readingTime: content.readingTime,
seoScore: content.seoOptimized?.score
}
}
}
# Data Analysis Assistant Handler
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, Any
async def handler(request: Dict) -> Dict:
query = request.get('query', '')
data_url = request.get('data_url')
# Load and process data
df = pd.read_csv(data_url)
# Analyze query intent
analysis_type = await determine_analysis_type(query)
if analysis_type == 'summary':
return generate_data_summary(df)
elif analysis_type == 'correlation':
return find_correlations(df, query)
elif analysis_type == 'trend':
return analyze_trends(df, query)
elif analysis_type == 'visualization':
return create_visualization(df, query)
// Code Review Assistant Handler
export default async function handler(request: Request) {
const { pullRequest, repository, rules } = await request.json()
// Analyze code changes
const analysis = await analyzeCodeChanges(pullRequest.diff)
// Check for issues
const issues = await checkForIssues(analysis, {
security: true,
performance: true,
style: true,
bestPractices: true
})
// Generate suggestions
const suggestions = await generateSuggestions(issues, rules)
return {
summary: {
totalIssues: issues.length,
criticalIssues: issues.filter(i => i.severity === 'critical').length,
suggestions: suggestions.length
},
issues,
suggestions,
approval: issues.filter(i => i.severity === 'critical').length === 0
}
}
# Meeting Assistant Handler
import whisper
from datetime import datetime
from typing import List, Dict
async def handler(request: Dict) -> Dict:
audio_file = request.get('audio_file')
meeting_id = request.get('meeting_id')
# Transcribe audio
model = whisper.load_model("base")
result = model.transcribe(audio_file)
transcript = result["text"]
# Extract key information
action_items = await extract_action_items(transcript)
decisions = await extract_decisions(transcript)
summary = await generate_summary(transcript)
# Store results
await store_meeting_data(meeting_id, {
'transcript': transcript,
'action_items': action_items,
'decisions': decisions,
'summary': summary,
'timestamp': datetime.now()
})
return {
'transcript': transcript,
'action_items': action_items,
'decisions': decisions,
'summary': summary
}