Real-world AI Agent Examples

AI Agent Examples for
Every Use Case

Explore production-ready AI agents built with Reminix. From customer support to data analysis, see how developers are using AI to solve real problems.

Production-Ready Examples

Each example includes complete source code, deployment instructions, and real-world use cases.

Customer Support Bot
SupportBeginnerTypeScript
AI-powered customer support agent that handles common inquiries and support tickets with natural language processing.

Key Features

Natural Language ProcessingTicket RoutingKnowledge Base IntegrationMulti-language Support

Use Cases

  • Handle common customer questions
  • Route complex issues to human agents
  • Provide 24/7 support coverage
  • Reduce support ticket volume

Code Preview

// Customer Support Bot Handler
export default async function handler(request: Request) {
  const { message, userId } = await request.json()
  
  // Analyze customer intent
  const intent = await analyzeIntent(message)
  
  // Route to appropriate response
  switch (intent.type) {
    case 'billing':
      return handleBillingInquiry(message, userId)
    case 'technical':
      return handleTechnicalSupport(message, userId)
    case 'general':
      return handleGeneralInquiry(message, userId)
    default:
      return fallbackToHuman(message, userId)
  }
}
E-commerce Assistant
E-commerceIntermediatePython
Intelligent shopping assistant that helps customers find products, compare prices, and make purchase recommendations.

Key Features

Product SearchPrice ComparisonRecommendation EngineOrder Tracking

Use Cases

  • Help customers find products
  • Provide personalized recommendations
  • Compare prices across vendors
  • Track order status and updates

Code Preview

# E-commerce Assistant Handler
import openai
from typing import Dict, List

async def handler(request: Dict) -> Dict:
    query = request.get('query', '')
    user_id = request.get('user_id')
    
    # Analyze user intent
    intent = await analyze_shopping_intent(query)
    
    if intent['type'] == 'search':
        products = await search_products(intent['keywords'])
        return format_product_results(products)
    elif intent['type'] == 'recommend':
        recommendations = await get_recommendations(user_id)
        return format_recommendations(recommendations)
    elif intent['type'] == 'track':
        order_status = await get_order_status(intent['order_id'])
        return format_order_status(order_status)
Content Generation Bot
ContentBeginnerTypeScript
AI-powered content creator that generates blog posts, social media content, and marketing copy based on prompts and brand guidelines.

Key Features

Blog Post GenerationSocial Media ContentSEO OptimizationBrand Voice Consistency

Use Cases

  • Generate blog post drafts
  • Create social media content
  • Write marketing copy
  • Maintain brand voice consistency

Code Preview

// Content Generation Bot Handler
export default async function handler(request: Request) {
  const { prompt, contentType, brandGuidelines } = await request.json()
  
  // Generate content based on type
  const content = await generateContent({
    prompt,
    type: contentType,
    guidelines: brandGuidelines,
    tone: 'professional',
    length: 'medium'
  })
  
  // Optimize for SEO if blog post
  if (contentType === 'blog') {
    content.seoOptimized = await optimizeForSEO(content.text)
  }
  
  return {
    content: content.text,
    metadata: {
      wordCount: content.wordCount,
      readingTime: content.readingTime,
      seoScore: content.seoOptimized?.score
    }
  }
}
Data Analysis Assistant
AnalyticsAdvancedPython
Intelligent data analyst that processes datasets, generates insights, and creates visualizations based on natural language queries.

Key Features

Data ProcessingStatistical AnalysisVisualization GenerationInsight Extraction

Use Cases

  • Analyze business metrics
  • Generate data visualizations
  • Extract actionable insights
  • Create automated reports

Code Preview

# Data Analysis Assistant Handler
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from typing import Dict, Any

async def handler(request: Dict) -> Dict:
    query = request.get('query', '')
    data_url = request.get('data_url')
    
    # Load and process data
    df = pd.read_csv(data_url)
    
    # Analyze query intent
    analysis_type = await determine_analysis_type(query)
    
    if analysis_type == 'summary':
        return generate_data_summary(df)
    elif analysis_type == 'correlation':
        return find_correlations(df, query)
    elif analysis_type == 'trend':
        return analyze_trends(df, query)
    elif analysis_type == 'visualization':
        return create_visualization(df, query)
Code Review Assistant
DevelopmentAdvancedTypeScript
AI-powered code reviewer that analyzes pull requests, suggests improvements, and ensures code quality standards.

Key Features

Code Quality AnalysisSecurity ScanningPerformance OptimizationBest Practice Suggestions

Use Cases

  • Automated code reviews
  • Security vulnerability detection
  • Performance optimization suggestions
  • Code style enforcement

Code Preview

// Code Review Assistant Handler
export default async function handler(request: Request) {
  const { pullRequest, repository, rules } = await request.json()
  
  // Analyze code changes
  const analysis = await analyzeCodeChanges(pullRequest.diff)
  
  // Check for issues
  const issues = await checkForIssues(analysis, {
    security: true,
    performance: true,
    style: true,
    bestPractices: true
  })
  
  // Generate suggestions
  const suggestions = await generateSuggestions(issues, rules)
  
  return {
    summary: {
      totalIssues: issues.length,
      criticalIssues: issues.filter(i => i.severity === 'critical').length,
      suggestions: suggestions.length
    },
    issues,
    suggestions,
    approval: issues.filter(i => i.severity === 'critical').length === 0
  }
}
Meeting Assistant
ProductivityIntermediatePython
Intelligent meeting assistant that transcribes conversations, extracts action items, and generates meeting summaries.

Key Features

Real-time TranscriptionAction Item ExtractionMeeting SummarizationCalendar Integration

Use Cases

  • Transcribe meeting audio
  • Extract action items and decisions
  • Generate meeting summaries
  • Schedule follow-up meetings

Code Preview

# Meeting Assistant Handler
import whisper
from datetime import datetime
from typing import List, Dict

async def handler(request: Dict) -> Dict:
    audio_file = request.get('audio_file')
    meeting_id = request.get('meeting_id')
    
    # Transcribe audio
    model = whisper.load_model("base")
    result = model.transcribe(audio_file)
    transcript = result["text"]
    
    # Extract key information
    action_items = await extract_action_items(transcript)
    decisions = await extract_decisions(transcript)
    summary = await generate_summary(transcript)
    
    # Store results
    await store_meeting_data(meeting_id, {
        'transcript': transcript,
        'action_items': action_items,
        'decisions': decisions,
        'summary': summary,
        'timestamp': datetime.now()
    })
    
    return {
        'transcript': transcript,
        'action_items': action_items,
        'decisions': decisions,
        'summary': summary
    }

Ready to Build Your Own AI Agent?

Choose from our examples or start from scratch. Deploy your first AI agent in minutes.